Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(2-Chlorophenyl)-3-methyl-1-phenyl-6-(2-pyridyl)pyrazolo[3,4-b]pyridine

Shu-Jiang Tu,* Song-Lei Zhu and Xiang Zou

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.067$
$w R$ factor $=0.140$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{Cl}$, was synthesized by the reaction of 5-amino-3-methyl-1-phenylpyrazole with 3-(2-chlorophenyl)-1-(2-pyridyl)prop-2-en-1-one in glycol under microwave irradition. X-ray crystal structure analysis reveals that the substituted pyridine ring is almost coplanar with the pyrazolo[3,4-b]pyridine moiety.

Comment

The pyrazolo[3,4-b]pyridine system has many interesting biological and pharmacological properties, such as active antitubercular action and action against Gram-positive and Gram-negative bacteria, and is used in the treatment of a wide variety of stress-related illnesses (Sekikawa et al., 1973; Kuczynski et al., 1979; El-Dean et al., 1991; Chen, 1995). As part of our programme aimed at employing microwave irradiation for the preparation of heterocyclic compounds (Tu et al., 2004), we have recently synthesized pyrazolo[3,4-b]pyridine derivatives under microwave irradiation. We report here the crystal structure of the title compound, (I).

(I)

The dihedral angle between the pyrazole plane and $\mathrm{N} 1 / \mathrm{C} 1-$ C 5 pyridine ring is $2.6(1)^{\circ}$, indicating that they are almost coplanar (Fig. 1). The N4/C19-C23 pyridine ring and C13-C18 benzene ring form dihedral angles of 4.4 (1) and $63.0(1)^{\circ}$, respectively, with the attached pyridine ring. The C7-C12 phenyl ring forms a dihedral angle of $24.2(1)^{\circ}$ with the pyrazole ring. In the crystal structure, the molecules pack as layers parallel to the ac plane.

Experimental

Compound (I) was prepared by the reaction of 5-amino-3-methyl-1phenylpyrazole (2 mmol) with 3-(2-chlorophenyl)-1-(2-pyridyl)prop-2-en-1-one (2 mmol) in glycol (1 ml) under microwave irradiation (yield 77%, m.p. 437 K). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution (95\%).

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{4}$
$M_{r}=396.87$
Monoclinic, $P 2^{b} / c$
$a=11.545(2) \AA$
$b=20.694(3) \AA$
$c=8.5970(15) \AA$
$\beta=110.147(4)^{\circ}$
$V=1928.3(6) \AA^{3}$
$Z=4$
$D_{x}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=396.87$
Monoclinic, $P 2_{6} / c$
Mo $K \alpha$ radiation
Cell parameters from 6741 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Plate, light yellow
$0.38 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.922, T_{\text {max }}=0.979$
21550 measured reflections
4401 independent reflections
3457 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 14$
$k=-21 \rightarrow 26$
$l=-11 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0443 P)^{2}\right)
$$

$=0.067$
$w R\left(F^{2}\right)=0.140$
$S=1.16$
4401 reflections
263 parameters
H -atom parameters constrained

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003);

Figure 2
The molecular packing of (I), viewed along the a axis.
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (grant No. 20372057) and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 01AXL14) for financial support.

References

Chen, Y. L. (1995). Int. Pat. WO 9534563 AL; Chem. Abstr. (1995), 124, 232447.

El-Dean, A. M. K., Atalla, A. A., Mohamed, T. A. \& Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541-546.
Jacobson, R. (1998). Private communication to the Rigaku Corporation.
Kuczynski, L., Mrozikiewic, A., Banaszkiewicz, W. \& Poreba, K. (1979). J. Pharmacol. Pharm. 31, 217-225.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sekikawa, I., Nishie, J., Tono-oka, S., Tanaka, Y. \& Kakimoto, S. (1973). J. Heterocycl. Chem. 10, 931-932.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Tu, S. J., Fang, F., Zhu, S. L., Li, T. J., Zhang, X. J. \& Zhuang, Q. Y. (2004). Synlett, pp. 537-539.

